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ML in critical applications

ML tools make potentially high-stakes decisions: self-driving cars, disease diagnosis, ...

S8

Can we have reliable uncertainty quantification (confidence) in these predictions?



Today's predictive algorithms

random forests, gradient boosting

.“ U @ N

Breiman and Friedman

Xi

neural networks

>y » 7z, €4—o, Target

LeCun, Hinton and Bengio



A snapshot of conformal inference

» Developed a predictive layer that returns valid prediction intervals

Protection
layer

X Predictive f )

model ¢X)

» Training samples (X;,Y;), i=1,...,n

> Test point (X,Y =7)



A snapshot of conformal inference

» Developed a predictive layer that returns valid prediction intervals

Protection
layer

x Predictive f(X)

model ¢X)

» Training samples (X;,Y;), i=1,...,n
> Test point (X,Y =7)
» Conformal inference Vovk et al. '99, Papadopoulos et al. '12, Lei et al. '18, Barber et al. '19, Romano et al. '19

Constructs predictive interval C(x) with P (Y € é(X)) > 90%

» Holds in finite samples for any distribution of (X, Y) and any predictive algorithm f



From factuals to counterfactuals



From factuals to counterfactuals

Counterfactual reasoning is ubiquitous in modern science

» Causal inference: what would have been one's response had one taken the treatment
» Offline policy evaluation: what would have been the outcome had the policy changed
» Algorithmic fairness: what would have been the prediction had one belonged to another group

» Explainable machine learning: what would have been the output had the input changed



Agenda

Part |: counterfactual predictive inference



Inference of counterfactuals?

> Potential outcome (PO) framework (Neyman, '23; Rubin, '74)

e T €{0,1} binary treatment
e Y(1), Y(0) potential outcomes

e X covariates

> Assumptions: super-population (i.i.d.) + SUTVA + unconfoundedness (Y(1), Y(0)) 1L T | X



Inference of counterfactuals?

> Potential outcome (PO) framework (Neyman, '23; Rubin, '74)

e T €{0,1} binary treatment
e Y(1), Y(0) potential outcomes

e X covariates

> Assumptions: super-population (i.i.d.) + SUTVA + unconfoundedness (Y(1), Y(0)) 1L T | X

[ Find interval estimate C;(X) s.t. P(Y(1) € Ci(X) | T =0) > 90%




Inference of counterfactuals?

> Causal diagram (DAG) framework (Pearl, '95)

e T €{0,1} binary treatment
e Y, Yy counterfactuals

e X covariates

> Assumptions: super-population (i.i.d.) + X satisfying the backdoor criterion

[ Find interval estimate C;(X) s.t. P(Y; € Gi(X) | T =0) > 90%




Counterfactual inference

Assign treatment by a coin toss for each subject based on the propensity score e(x)

& P(treated | X = z) = e(z)

-

) P(control | X = z) =1 — e(x)

1



Counterfactual inference

Each subject has potential outcomes (Y(1), Y(0)) and the observed outcome Y°b
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Counterfactual inference
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Counterfactual inference
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Unobserved

Use observed treated units @ ?



The counterfactual inference problem and covariate shift

Pxir—1 X Py(1)x

® 6 06 0 O
B B B Em Em Observed

Unobserved

PX|T:O X Py(1)1x

Distribution mismatch! Covariate shift



The counterfactual inference problem and covariate shift

Real world (treated units) Counterfactual world

Y(1)
Y(1)

density
density




The counterfactual inference problem and covariate shift

Use i.i.d. samples (observed treated units) from Px 7r—; X Py1)x to construct fl(X) with

]P)(Y(l) S él(X)) >90% under 'DX\T:O X PY(1)|X




The counterfactual inference problem and covariate shift

Use i.i.d. samples (observed treated units) from Px 7r—; X Py1)x to construct fl(X) with

]P)(Y(l) S él(X)) >90% under 'DX\T:O X PY(1)|X

N dPX|T:O ) 1—e(x)
dPx|T=1 e(x)

Covariate shift w(x)



Conformal inference under covariate shift

Conformal Inference

Vovk et al. ('99), Papadopoulos et al. ('12), Lei et al. ('18)

(X,', Y,) I'.’I:;‘d. Px x 'DY|X — P(X,Y)NPXXPY‘X(Y S é(X)) > 90%



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)
Tibshirani, Barber, Candés, Ramdas ('19); Romano, Patterson, Candeés ('19)

i.d.d. A
(X,', Y,) ~" Px X PY\X - P(XA,Y)NQXXPHX(Y S C(X)) > 90%



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Randomly split (X;, Y?°")7,—; into two folds

1

B3 SE8 B
o A%Qﬁ o, 2
R T mé&wﬁigﬂk

Y(1)
Y(1)

X X
Proper training set Calibration set



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Fit 5& 95%-th quantiles of Y (1) | X on training fold

—— Estimated low & high quantiles

Y(1)

Apply quantile regression

Y(1)

Calibration set




Conformal inference under covariate shift

Y(1)

Weighted Split Conformalized Quantile Regression (CQR)

Estimate 5 & 95%-th quantiles of Y (1) | X on calibration fold

—— Estimated low & high quantiles

Apply quantile regression

Y(1)

Calibrate




Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)

Signed distance: V; £ max{do.05(X;) — Yi(1), Yi(1) — Go.0s(X;)}

Y(1)

Calibrate

Density

Non-conformity scores

Histogram of signed distances




Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)
i w(Xi) + W(X))

Weighted dist.: Y271 pi(X)dv; + Poo(X)doe Where pi(x) = w(Xi)/ (3

Density

Y(1)

Non-conformity scores
Histogram weighted by w(x)

Calibrate



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)
Cutoff: Q(x) £ Quantile (90%, Y"1 ; pi(x)dv, + Poc(X)dso)

Density

Y(1)

Q@)

Non-conformity scores
Find the 90%-th quantile Q(x)

Calibrate



Conformal inference under covariate shift

Weighted Split Conformalized Quantile Regression (CQR)
Interval: Ci(x) = [Go.os(x) — Q(x), do.0s(x) + Q(x)]

// \

/

/

/

y

X Non-conformity scores Q(z)

Calibrate Find the 90%-th quantile Q(x)

Y(1)
Density




Near-exact counterfactual inference in finite samples

Theorem (L. and Candes, 2020, for randomized experiments)

Set w(x) = (1 — e(x))/e(x) (e(x) known) in weighted split-CQR. Then
90% < P(Y(1) € Ci(X) | T =0) <90% + c/n

» [ower bound holds without extra assumption

» Upper bound holds if V;'s are a.s. distinct & overlap holds, and c only depends on the overlap



Near-exact counterfactual inference in finite samples

Theorem (L. and Candes, 2020, for randomized experiments)

Set w(x) = (1 — e(x))/e(x) (e(x) known) in weighted split-CQR. Then
90% < P(Y(1) € Ci(X) | T =0) <90% + c/n

» [ower bound holds without extra assumption

» Upper bound holds if V;'s are a.s. distinct & overlap holds, and c only depends on the overlap

v Any conditional distribution Py (1)x (=) ‘ A
1)1 > > i)
e(z)

v" Any sample size ' .

v Any procedure to fit conditional quantiles



Approximate counterfactual inference

Theorem (informal, L. and Candes, 2020, for observational studies)

Let &(x) be an estimate of e(x). Set w(x) = (1 — é(x))/é(x) in weighted split-CQR. Then
P(Y(1) € Ci(X)| T =0) ~ 90%
if (1) é(x) = e(x) OR (2) §o.05/0.95(X) = Go.05/0.95(x). Under (2),

P(Y(1) € C(X) | T =0, X) ~ 90% with high probability (conditional coverage!)

Similar to the double robustness for ATE



Agenda

Part Il: Empirical results on counterfactual inference



Simulation

> Variant of example from Wager and Athey ('18)
» X € R? Gaussian, independent or correlated, with d € {10,100}

» Y(0) =0 ~~ ITE inference is counterfactual inference

> V(1) | X ~ N(X), 0(X)2):
> u(X) depends on Xi, Xo smoothly
» o(X) =1 (homoscedastic) or a(X) = — log(1 — ®(X1)) (heteroscedastic)

» e(X) € [0.25,0.5] depends on X; smoothly



Our R package cfcausal (github.com/lihualei71/cfcausal)

cfcausal [[BXJ A  Reference Articles ~

cfcausal License

Full license
An R package for conformal inference of counterfactuals and individual treatment effects MIT + file LICENSE
Citation
Overview Giting cfcausal
This R package implements weighted conformal inference-based procedures for counterfactuals and individual treatment effects Developers
proposed in our paper: Conformal Inference of Counterfactuals and Individual Treatment Effects. It includes both the split conformal Lihua Lei
inference and cross-validation+. For each type of conformal inference, both conformalized quantile regression (CQR) and standard Maintainer

conformal inference are supported. It provides a pool of convenient learners and allows flexible user-defined learners for conditional
mean and quantiles.

« conformalCf() produces intervals for counterfactuals or outcomes with missing values in general.

« conformalIte() produces intervals for individual treatment effects with a binary treatment under the potential outcome
framework.

= conformal() provides a generic k of weit conformal i for continuous outcomes.

« conformalInt() provides a generic framework of weighted conformal inference for interval outcomes.

Installation

if (!require("devtools")){
install.packages("devtools")

¥

devtools::install_github("lihualei71/cfcausal")



Marginal coverage of CATE = E[Y/(1) | X] (sanity check)
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Empirical Coverage of CATE (alpha = 0.05)




Marginal coverage of Y(1)
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Average length of C;(X)
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Conditional coverage of Y(1)

Causal Forest X-learner BART CQR-RF CQR-Boosting CQR-BART
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Agenda

Part lll: from counterfactuals to individual treatment effects



The ITE inference problem
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L. and Candes, '20

Prediction interval for individual treatment effect ITE = Y(1) — Y(0)

Px~gy (ITE € Gre(X)) > 1-a



Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)

7(x) 2E[ITE | X = x] # ITE



Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)

7(x) £ E[ITE | X = x] # ITE

» Uncertainty of the response around the CATE function (ignored by CATE)



Contrast with conditional average treatment effects
Conditional average treatment effects (CATE)
7(x) £ E[ITE | X = x] # ITE
» Uncertainty of the response around the CATE function (ignored by CATE)

x : age = 30s, gender = female, height = 5’7, smoking = NO

©®-=1 ©@=15 @=-1 ©@=25@=-5
CATE =1 CATE =1 CATE =1



Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)

7(x) £ E[ITE | X = x] # ITE
» Uncertainty of the response around the CATE function (ignored by CATE)

» Uncertainty of CATE estimators due to finite samples (impossibility result by Barber '20)



Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)
7(x) £ E[ITE | X = x] # ITE
» Uncertainty of the response around the CATE function (ignored by CATE)

» Uncertainty of CATE estimators due to finite samples (impossibility result by Barber '20)

d =100

BARTH . ]:’7 4‘]]7
X-learner+ - 4|::|— . AD:’7 -
Causal Forest+ . —[I:— .. 4‘]]7

0.25 0.50 075 095 025 0.50
Empirical Coverage of CATE

Method
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Contrast with conditional average treatment effects

Conditional average treatment effects (CATE)

o

o

7(x) 2 E[ITE | X = x] # ITE

Judea Pearl @yudapearl-4d

| have been reading several papers recently where the term "individualized
treatment effect" is wrongly defined by E[Y(1)-Y(0)| C=ci] and ci is a set of
characteristics associated with individual i. See
people.ee.duke.edu/~Icarin/bv-nic....

Warning: This is still population-based 1/2

O 10 Q77 Y

Judea Pearl @yudapearl-4d

treatment effect, for subpopulation C=ci. To be distinguished from truly
individualized effect Y_i(1)-Y_i(0) as is treated (and bounded) here: ucla.in/
39Ey8sU

See also Causality section 11.9.1. Watch out for possible confusions.

Q1 n2 Q 22 &



Summary

Conformal inference of counterfactuals and individual treatment effects is reliable

» Randomized experiments: near-exact coverage in finite samples with any black-box

» Observational studies: doubly robust guarantees of coverage



Other Uses?

> Conformalized survival predictive analysis (w/ Emmanuel Candés and Zhimei Ren)

» Medical image analysis (W/ Stephen Bates, Anastasios Angelopoulos, Jitendra Malik, and Micheal Jordan)



Conformalized survival analysis

Zhimei Ren Emmanuel Candes



Right Censored Data: Type-l Censoring

Patient 1
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Right Censored Data: Type-l Censoring

P —

Date of Confirmation



Right Censored Data: Type-l Censoring




Right Censored Data: Type-l Censoring

T : survival time

T : survival time
e e

. P - -




Right Censored Data: Type-l Censoring




Right Censored Data: Type-l Censoring

P —
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Right Censored Data: Type-l Censoring
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A reliable predictive system for survival times

Phie_ ==
pidd

Patient-level data “Conformal wrapper” Lower confidence bound

[ Find lower predictive bound 7A'10(X), st. P(T > 7A'10(X)) > 90%




Survival times as counterfactuals?

> Event indicator A = /(T < C):

7_:{ T fA=1

C ifA=0
» Treat T as a “potential outcome” under the “treatment” A =17

» INVALID because “unconfoundedness” does not hold:

(T,OLHT<O) | X

> (X;, T;)a,=1 has shifts in both the covariate distribution and conditional survival function



Conformalized survival analysis

» Ignoring the censoring leads to a prediction problem

P(T > Tio(X)) > 90% = P(T > Tio(X)) > 90%

» Potentially huge efficiency loss



Conformalized survival analysis

» Ignoring the censoring leads to a prediction problem

P(T > Tio(X)) > 90% = P(T > Tio(X)) > 90%

v

Potentially huge efficiency loss

v

We apply weighted conformal inference on a carefully chosen subpopulation

> Near-exactness: Ty,(X) is valid if P(C | X) is known (up to a multiplicative constant)

» Double robustness: Ti,(X) is approximately valid if P(C | X) or P(T | X) is estimated well
» Also useful beyond the type-l censoring



» Tutorial on conformal inference by Emmanuel Candeés at Bernoulli-IMS One World Symposium
» Conformal Inference of Counterfactuals and Individual Treatment Effects (L. and Candes, '20)
» Conformalized Survival Analysis (Candes*, L.*, and & Ren*, '21)

» Distribution-Free, Risk-Controlling Prediction Sets (Bates*, Angelopoulos*, L.*, Malik, and Jordan, '21)

Thank you!

* alphabetical order or equal contribution



Double robustness of weighted split-CQR

Theorem (L. and Candes, '20)

Assume one of the following holds:
(1) E|1/8(X) — 1/e(X)| = o(1),
(2) P(Y(1) =y | X = x) uniformly bounded away from 0 and oo and there exists 6 > 0

E[1/8(X)"*°] = 0(1), E[H(X)/&(X)],E[H(X)/e(X)] = o(1),

where H(x) = max{|§o.05(x) — go.05(x)|, |o.05(x) — go.05(x)|}.

Then
P(Y(1) € Gi(X) | T =0) > 90% — o(1).

Furthermore, if (2) holds, then

P(Y(1) € Gi(X)| T =0,X) > 90% — op(1).



The ITE inference problem

> Naive approach: get Cy(x) and Co(x) by weighted split-CQR and set

CITE(X) = Cl(X) — Co(X)
e Apply Bonferroni correction (5% for each potential outcome)

e P(Y(1) — Y(0) € Giru(X)) > 90% regardless of the correlation structure between Y (1) and Y/(0)



The ITE inference problem

> Naive approach: get Cy(x) and Co(x) by weighted split-CQR and set

CITE(X) = Cl(X) — Co(X)
e Apply Bonferroni correction (5% for each potential outcome)

e P(Y(1) — Y(0) € Giru(X)) > 90% regardless of the correlation structure between Y (1) and Y/(0)

» Nested approach: our focus

e Use counterfactual inference to generate ITE intervals for subjects in the study

e Generalize these intervals to subjects not in the study

~> Reduces conservatism of the naive approach



