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Who decides the research question?
Who is in the target population?
What do the data reflect?

Howwill the algorithm be assessed?

Justice: benefits, risks, costs, and resources
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Plan Payment Risk Adjustment
Over 50million people in the United States currently enrolled in an
insurance program that uses risk adjustment

I Redistribute funds based on health
I Encourage competition based on
efficiency and quality

I Massive financial implications

Spending outcome

Y = θ X

Coefficient vector
Input vector
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ImprovingMental Health Care, 1950-2000

Changes in financing and organization of mental health care, not new
treatment technologies, made the difference

“Improvements ... evolved through ...
more money, greater consumer choice,
and the increased competition among ...
providers that these forces unleashed”



Mental Health and Substance Use Disorders (MHSUD)

Risk adjustment in theMarketplaces
recognizes only 20% of enrollees withMHSUD

Individuals withMHSUD can be systematically discriminated against
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FairnessMethodology

Adding variables, separate formulas, statistical learning



FairnessMethodology

Differing thresholds



Algorithmic Fairness
Typical algorithmic fairness problem in computer science has

I outcome Y
I vector X that includes a protected class or sensitive attribute A ⊂ X

Goal:
Create estimator for f(X) = Y while ensuring the function is fair for A
Commonmeasures of fairness are based on the notion of group fairness,
striving for similarity in predicted outcomes or errors for groups
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Global vs. Group FitMetrics
R2 = 1−

∑
k(Yk − Ŷk)2∑
k(Yk − Ȳk)2

I Ŷ is predicted spending
I Ȳ is mean spending
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k(Yk − Ȳk)2
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k(Yk − Ȳk)2
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(Ŷj−Yj)



Global vs. Group FitMetrics
R2 = 1−

∑
k(Yk − Ŷk)2∑
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k(Yk − Ȳk)2

Health Economics

Net Compensation
(Layton et al. 2017)
1
ng
∑
i∈g
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Canwe improve fairness for undercompensated groups
in plan payment risk adjustment?

Challenges:
I Current formulas created with parametric regression without
built-in fairness criteria

I Much of the fairness literature considers binary decision-making
Advances:
1 Zink & Rose (2020), Biometrics
Fair regression for a single attribute with continuous outcomes

2 McGuire, Zink & Rose (2021), American Journal of Health Economics
Fair regression for several single attributes and postprocessing

3 Zink & Rose (2021), BMJ Health & Care Informatics
Identifying complex groups defined bymultiple attributes
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1 Covariance Regression
Covariance techniques require covariance between the residual and
protected class be close to zero (Zafar et al. 2017a,b)
We extend thesemethods for continuous residualswith continuous Y.
The new optimization problem is given by:

minimize
θ

{∑
k

(
Yk −

∑
p
θpXkp

)2}
, subject to

(1− P(A = 1))
∑
i∈g

(
Yi−

∑
p
θpXip

)
− P(A = 1)

∑
j∈gc

(
Yj−

∑
p
θpXjp

)
< c,

where c = m× c∗ withm ∈ [0,1] and c∗ the covariance of the
undercompensated group andOLS residual



1 Net Compensation Regression
Propose new custom penalty term that punishes large net compensation
Ourminimization problem:
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where z is positive, 1-to-1 correspondence with λwhen constraint is binding
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2 Multiple Groups
●

●

●

●

●

●
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●

●

●

Injury and poisoning

Congenital anomalies

Unclassified conditions

Digestive diseases

Musculoskeletal diseases

Genitourinary diseases

Nervous system diseases

Blood diseases

Skin diseases

Neoplasms

Pregnancy and childbirth complications

Circulatory diseases

Respiratory diseases

Other conditions

Perinatal conditions

Metabolic and immunity disorders

Infectious and parasitic diseases

0.8 0.9 1.0

Total Payment Ratio (TPR)

● Baseline

Constrained Regression 
 (TPRs set to 1)
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IN CLOSING



Biases enter data & algorithms inmanyways

Diverse teams
Metrics matter

Not as simple as add or drop attribute
Algorithmsmay contribute to solutions

Respect the data
Engagewith the application or do not use it

Cite the literature
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Does Your AlgorithmHave a Social Impact Statement?

fatml.org/resources/principles-for-accountable-algorithms



If you don’t meet peoplelike you in your coursesor see yourself in your
instructors, that doesn’tmean you don’t belong

in this field
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