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é Learning two fields takes, surprisingly,
twice as long as learning one. But it’s
worth the investment because you get
to solve real problems for the first time. »

Barbara Engelhardt | Princeton

“ In both private enterprise and the

public sector, research must be
reflective of the society we're serving. ”’

Rediet Abebe | Harvard & UC Berkeley

“ ..behind every data point there is a

human story, there is a family, and
there is suffering.

Nick Jewell | LSHTM & UC Berkeley
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Who decides the research question?
Who is in the target population?
What do the data reflect?
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Justice: benefits, risks, costs, and resources
are equitably distributed
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Ethical Machine Learning in Healthcare

Irene Chen
PhD Student
MIT

Annual Review of Biomedical Data Science

Vol. 4:123-144 (Volume publication date July 2

Irene . Chen, Emma Pierson, SherriRose, Shalmali Joshi, Kadija Ferryman, and Marzyeh Ghassemi
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Variable Selection and Upcoding

Reduced set of 10 variables 92% as efficient

A Machine Learning Framework for gio8
Plan Payment Risk Adjustment

Sherri Rose




Variable Selection and Upcoding

Red I £ 10 varial 029 i

“...results for the risk adjustment algorithms
e0e0o : 9

that considered a limited subset of
variables...performed consistently worse
across all benchmarks.”

Sample Selection for Medicare Risk = HSR
Adjustment Due to Systematically
Missing Data

Savannah L. Bagquist®, Thomas G. McGuire,
Timothy J. Layton (5, and Sherri Rose

A Machine Learning Framework for gio8
Plan Payment Risk Adjustment

Sherri Rose




Improving Mental Health Care, 1950-2000

Changes in financing and organization of mental health care, not new
treatment technologies, made the difference

“Improvements ... evolved through ...
more money, greater consumer choice,
and the increased competition among ...
providers that these forces unleashed”

BETTER
A P,‘)‘ut :\‘tc;»(,

]
/ /

|



Mental Health and Substance Use Disorders (MHSUD)

Risk adjustment in the Marketplaces
recognizes only 20% of enrollees with MHSUD

Individuals with MHSUD can be systematically discriminated against

By Ellen Montz, Tim Layton, Alisa B. Busch, Randall P. Ellis, Sherri Rose, and Thomas G. McGuire —_—
Risk-Adjustment Simulation: Plans }2
May Have Incentives To Distort
Mental Health And Substance Use
Coverage
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striving for similarity in predicted outcomes or errors for groups
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Typical algorithmic fairness problem in computer science has

» outcomeY
» vector X that includes a protected class or sensitive attribute A c X

Create estimator for f(X) = Y while ensuring the function is fair for A

Goal: J
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> ok(Yie = Yi)?
» Y is predicted spending
» Y is mean spending

Learning 5 Training 5 5 5 5 5 - 5 5 5 5
Set Set

9 9 9 9 9 9 9 9 9 9
Validation 10 10 10 10 10 10 10 10 10
Y Set

Fold 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
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Health Economics

Net Compensation
(Layton et al. 2017)
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2 MHSUD
R Net Compensation
| 1. baseline formula 13.1% -$2,822 |
J7 2% increase) 31% increase)
¥ ¥
2. + mental health 13.3% -$1,952
47 No change "‘ 11% increase)
| 3. + substance use 13.3% "\ -$1,731 ‘(\|

47 No change \2% decrease)

|4a.-|iverconditions 13.3% \ -$1,763 *’|

18% decrease 2% increase

|4b. - kidney conditions 10.9% $1,702 |

Limitations of P-Values and R-Squared for Stepwise Regression Building: A Fairness
Demonstration in Health Policy Risk Adjustment

. Sherri Rose and Thomas G. McGuire



Global vs. Group Fit Metrics

R2 —1- Zk(yk — Vk)z

> (Yie— Yi)?

Health Economics Computer Science & Statistics
Net Compensation Mean Residual Difference

(Layton et al. 2017) (Calders et al. 2013)

1 - 1 - 1 N

— ) (Yi—=Yi) = (Vi-Y)-=> (¥;-V)

Ng < ng < ci

[S:4 €8 JES



Global vs. Group Fit Metrics

R2 —1- Zk(yk — ?k)z

>k (Y — )2
Health Economics Computer Science & Statistics
Net Compensation Mean Residual Difference
(Layton et al. 2017) (Calders et al. 2013)
1 ~ 1 - 1 N
n 2 (Fi= ) oy 2 Y= (=Y)

ieg icg jege



Global vs. Group Fit Metrics

R2 —1- Zk(yk — Vk)z

> (Yie— Yi)?

Health Economics Computer Science & Statistics
Net Compensation Mean Residual Difference

(Layton et al. 2017) (Calders et al. 2013)

1 ~ 1 ~ 1 N

— ) (Yi—=Yi) = (Vi-Y)-=> (¥;-V)

Ng < ng < ci

[S:4 €8 JEZ

Predictive Ratios
(Pope et al. 2004)
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PhD Student
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@ Covariance Regression

Covariance techniques require covariance between the residual and
protected class be close to zero (Zafar et al. 2017a,b)

We extend these methods for continuous residuals with continuous Y.
The new optimization problem is given by:

2
minimize {Z (Yk — zp: 9,,ka> } . subject to

k

(1-PA=1) Z( Zepxm) = Z( Z%Xm) ¢,

ieg j€ge

where c = m x ¢* withm € [0, 1] and ¢* the covariance of the
undercompensated group and OLS residual



@ Net Compensation Regression

Propose new custom penalty term that punishes large net compensation

Our minimization problem:
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@ Net Compensation Regression

Propose new custom penalty term that punishes large net compensation

Our minimization problem:

Z (Yk - Z 9Pka>2 tAl - Z < Z 9,,X,,,>

k p Ng i€eg

Can alternatively present our new method as a constraint:
2
minimize Y — j
I {Z ( « Zﬁpxkp> } , subject to
k p
( Z 9,,x,,,> <z,

ng icg

where z is positive, 1-to-1 correspondence with A when constraint is binding



(1) Large Gains in Group Fairness vs. OLS

MHSUD Net
Regression Method R? Compensation
Average 12.4%

Covariance 12.4
Net Compensation 12.5
Weighted Average 12.6
Mean Residual Difference 12.8
Ordinary Least Squares 12.9
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(1) Large Gains in Group Fairness vs. OLS

MHSUD Net
Regression Method R? Compensation

Average 12.4% -$46
Covariance 12.4 -46
Net Compensation 12.5 -232
Weighted Average  12.6 411 98%
Mean Residual Difference 12.8 -1208
Ordinary Least Squares 12.9 -1872
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@ Multiple Groups .

Infectious and parasitic diseases
Metabolic and immunity disorders
Perinatal conditions

Other conditions

Respiratory diseases

Circulatory diseases

Pregnancy and childbirth complications
Neoplasms

Skin diseases

Blood diseases

Nervous system diseases
Genitourinary diseases
Musculoskeletal diseases
Digestive diseases

Unclassified conditions
Congenital anomalies

Injury and poisoning

Improving the Petformance of Risk Adjustment Systems:
onstrained Regressions, Reinsurance, and Variable Selection

Thomas G. McGuire, Anna L. Zink and Shetri Rose

Baseline
 Constrained Regression . *
(TPRs setto 1)
Ao
.
. A
. A
. A
. A
A
A
A
A
0.8 0.9

Total Payment Ratio (TPR)

'AMERIL‘AN

JOURNAL OF
HEALTH
ECONOMICS

1.0



@ Complex Groups

YES NO

YES v NO

=

YES d NO




@ Complex Groups

Example Hypothetical Group

YES NO

YES v NO 8

YES d NO




@ Complex Groups

Example Hypothetical Group

YES NO

e 2
—

YES d NO




@ Complex Groups

Example Hypothetical Group

YES NO

O B
—

YES d NO




@ Complex Groups

Example Hypothetical Group
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Complex Groups

Legend

AR @ Arthritis.
\/ HE@ Heart Disease
(NE Y@ Nerve Disorders
(As @ Asthma
(1T (@) Hypertension
0s @ Osteoporosis
(ca @) cancer

KI @ Kidney Disease
MH @ Mental Health
Ve
{ D)@ Diabetes
Nl
(u >°Lipid

Viral

Unfilled circles
indicate lack of
condition code

© | I — —

~30000 ~20000 -10000
Average Residual ($)
Identifying undercompensated groups
defined by multiple attributes in
risk adjustment BM) Health &

AnnaZink, Sherr Rose Care Informatics
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Cite the literature



Does Your Algorithm Have a Social Impact Statement?
Responsibility
Explainability

Accuracy
Auditability

Fairness

fatml.org/resources/principles-for-accountable-algorithms



If you don’t meet people
like you in your courses
or see yourself in your
instructors, that doesn’t
mean you don’t belong

in this field
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