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2020 was an extraordinary year (for policy evaluation)

 Unprecedented policy measures

* Wide variation in types of NPIs

 Rapidly changing policy environment

COVID-19
STAY AT HOME ORDER

Effective Monday, March 23 at 8 a.m.

phila.gov/COVID-19

Governor Carney Signs
Universal Indoor
Y EH A ELEEG

Keep 1.5 metres apart
when on escalators.

|

Delaware public mask mandate take effect
8:00 a.m. on Tuesday, January 11, 2022

australia.gov.au



Lockdowns around the world

Oxford Covid-19 government response stringency index

Graphic: Alan Smith and David Blood
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Policy evaluation is hard!

...especially during Covid-19



What’s so difficult?

(an incomplete list)

* Policies are not randomized
* Policies are adopted at different times
* Multiple policies are bundled together

e Policies do not determine individual behavior

* Policies in one location might affect another

But it's important to evaluate policy impacts!
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Design an observational study like a
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[Danaei et al 2018; Dickerman et al 2019]
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Design-based thinking can help

Target Trial Emulation Panel Data Methods

Design an observational study like a Beyond two-way fixed effects

randomized one

[Goodman-Bacon 2018; Abraham & Sun 2021; Callaway &

[Danaei et al 2018; Dickerman et al 2019] Sant’Anna 2021]

Policy Trial Emulation

Combines insights from Epidemiology and Econometrics

A stylized analysis:
- Evaluate the impact of stay at home orders in the US



Outline

1. The elements of policy trial emulation

2. Single and nested target trials
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The elements of policy trial emulation

_ o * What is a stay-at-home policy?
Require 4 definitions: - \Variation across states

i - We’ll package these all together — less interpretable
1. Units and exposures P 9 Y P

* Are we interested in policies or behavior?
- Individual mobility reduced before policy changes
3 Qutcomes - Limited compliance and enforcement ~ ©°0'sPee & Syverson 2020

2. Causal contrasts

4. Time zero * Are there spillovers?
- Probably! But this is difficult to account for
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The elements of policy trial emulation

* |Intent-to-treat (ITT) analysis
- Measure the effect of the policy as implemented

Require 4 definitions:

1.

> W D

* Potential outcomes framework
- W, State 1 has a stay-at-home order at time ¢
Causal contrasts - Y. (1), Y,(0) Outcome if order is/isn’t enacted

- Average of instantaneous effects Y, (1) — Y;,(0) for
states that enacted a stay at home policy

Units and exposures

Qutcomes

Time zero * Only focus on starting stay-at-home orders

- Effect of “turning off” policies adds complexity
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The elements of policy trial emulation

e Cumulative vs instantaneous outcomes

Require 4 definitions:
- Total number of Covid-19 cases

1. Units and exposures - Ratio of current current case count to previous day
2. Causal contrasts * Transforming the outcomes
- Logarithm transformation due to exponential growth
3. Outcomes
| e Data quality Is a concern
4. Time zero - Differential changes in testing regimes over time?
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Target trials

o Staggered adoption of policies March 23

» Create cohorts by adoption date : Overall

Estimate

e Measure the effect for each cohort
March 28th

 Aggregate across “single” target trials
to a "nested” target trial




A single target trial
March 23rd Cohort
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A single target trial
March 23rd Cohort

 What comparison states do we use?

* Length of follow up
- Only 19 days between first and last adopters
- EXxpect effects to be delayed
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A single target trial
March 23rd Cohort

 What comparison states do we use?

* Length of follow up
- Only 19 days between first and last adopters
- EXxpect effects to be delayed

« Compare to 8 never treated states
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A single target trial
March 23rd Cohort

 What comparison states do we use?

* Length of follow up
- Only 19 days between first and last adopters
- EXxpect effects to be delayed

« Compare to 8 never treated states

* Alternative: dynamic comparison groups

- Need to assess assumptions for all groups

- Are changes In effects just changes in
comparison group?
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Key assumption: parallel trends
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Estimating effects in a single target trial

Stay-at-Home Order

D Post Difference
Warch 23 0.31 (37%) 0.09 (10%) -0.22 (-20%)
Cohort

Never Treated 0.24 (27%) 0.10 (11%) -0.14 (-12%)
Cohort

Difference +0.07 (+10%) -0.07 (-1%) -0.08 (-8%)




Stay-at-Home Order

Pre

Post

Estimating effects in a single target trial

Difference

March 23
Cohort

0.31 (37%)

0.09 (10%)

-0.22 (-20%)

Never Treated
Cohort

0.24 (27 %)

0.10 (11%)

Difference

+0.07 (+10%)

-0.01 (-1%)

-0.14 (-12%)

-0.08 (-8%))
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| | March 23 Cohort
o 2x2 DID table is blunt

- Averages over the entire post period Log Case Growth
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 Dynamic DID estimate = :
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e 2x2 DID table is blunt

- Averages over the entire post period

 Dynamic DIiD estimate
- Use one reference time as “pre” period
- Create a sequence of 2x2 estimates

Estimated effect

-0.5 1

Estimating time varying effects

March 23 Cohort
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e 2x2 DID table is blunt

- Averages over the entire post period

 Dynamic DIiD estimate
- Use one reference time as “pre” period
- Create a sequence of 2x2 estimates

Estimated effect

Estimating time varying effects
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e 2x2 DID table is blunt

- Averages over the entire post period

 Dynamic DIiD estimate
- Use one reference time as “pre” period
- Create a sequence of 2x2 estimates

* Allows for a diagnostic check
- Pre-period should have zero effect

Estimated effect

Estimating time varying effects

March 23 Cohort
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e 2x2 DID table is blunt

- Averages over the entire post period

 Dynamic DIiD estimate
- Use one reference time as “pre” period
- Create a sequence of 2x2 estimates

* Allows for a diagnostic check
- Pre-period should have zero effect

» Possible violations of // trends
- Anticipation, time-varying confounding

Estimated effect

Estimating time varying effects

March 23 Cohort

1.0 1

0.5 1

0.0+ Nl ,“.“!.#H#‘*#H" H,,ﬂ,H. "+H, i
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From single to nested target trials

 Each single trial is different
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From single to nested target trials
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From single to nested target trials

 Each single trial is different 08 - ;
- Starting point, length of follow up, etc. I
[Hernan et al 2016] < :
2 :
 Take a size-weighted average 5)',’ 0.4 - 5
—_— 1 G —_— g ® .”. ol ® E
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- ®
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» Recovers “stacked” DiD % 5
* Uncertainty quantification is tricky -0.4 - | | fl | | |
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- Various forms of resampling methods

Days from statewide stay at home order
[Abraham & Sun 2021; Callaway & Sant’Anna 2021]



Plausibility of // trends depends on outcome
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Slight differences when using case time

Log Case Growth Log Cases
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- How we can use models to help estimate effects, without relying on them for identification



Wrapping up

» Evaluating policy impact is difficult, especially recently!

 More design-based thinking can give some clarity
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Thank youl!
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Case ratio estimates

Calendar Time Case Time
1 5 | |

0.5

0.5

0.0 + {|[MHHHHHT

] ] T
20 -10 0 10 20 30 20 -10 0 10 20 30
Days from statewide stay at home order

Estimated effect on daily case growth



References

Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment
effects. Journal of Econometrics, 225(2), 175-199. https://doi.org/10.1016/j.jeconom.2020.09.006

Callaway, B., & Sant’Anna, P. H. C. (2021). Difference-in-Differences with Multiple Time Periods. Journal of
Econometrics, 225(2), 200-230.

Danaei G, Garcia Rodriguez LA, Cantero OF, Logan RW, Hernan MA. Electronic medical records can be used to
emulate target trials of sustained treatment strategies. Journal of Clinical Epidemiology. 2018;96:12-22. doi:10.1016/
j.jclinepi.2017.11.02

Dickerman BA, Garcia-Albéniz X, Logan RW, Denaxas S, Hernan MA. Avoidable flaws in observational analyses: an
application to statins and cancer. Nature Medicine. 2019; 25, 1601-1606. https://doi.org/10.1038/s41591-019-0597-x
[5][19]

Goolsbee A, Syverson C. (2021) Fear, Lockdown, and Diversion: Comparing Drivers of Pandemic Economic Decline.
Journal of Public Economics, 193,

Hernan MA, Sauer BC, Hernandez-Diaz S, Platt R, Shrier |. Specifying a target trial prevents immortal time bias and
other self-inflicted injuries in observational analyses. Journal of Clinical Epidemiology. 2016; 79, 70-75.

The New York Times. Coronavirus (Covid-19) Data in the United States. Accessed August 2, 2020. https://github.com/
nytimes/covid-19-data/blob/master/README.md



