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• Unprecedented policy measures


• Wide variation in types of NPIs


• Rapidly changing policy environment

2020 was an extraordinary year (for policy evaluation)







Policy evaluation is hard!
…especially during Covid-19



(an incomplete list)

• Policies are not randomized


• Policies are adopted at different times


• Multiple policies are bundled together


• Policies do not determine individual behavior


• Policies in one location might affect another

What’s so difficult?

But it’s important to evaluate policy impacts!
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Design-based thinking can help
Target Trial Emulation 

Design an observational study like a 
randomized one 

[Danaei et al 2018; Dickerman et al 2019]

Panel Data Methods 

Beyond two-way fixed effects 

[Goodman-Bacon 2018; Abraham & Sun 2021; Callaway & 
Sant’Anna 2021]

Policy Trial Emulation 

A stylized analysis:

- Evaluate the impact of stay at home orders in the US

Combines insights from Epidemiology and Econometrics



Outline

1. The elements of policy trial emulation


2. Single and nested target trials
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4. Time zero

• What is a stay-at-home policy?

- Variation across states

- We’ll package these all together → less interpretable

• Are we interested in policies or behavior?

- Individual mobility reduced before policy changes

- Limited compliance and enforcement

• Are there spillovers?

- Probably! But this is difficult to account for

[Goolsbee & Syverson 2020] 
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• Intent-to-treat (ITT) analysis

- Measure the effect of the policy as implemented

•  Potential outcomes framework

-  State  has a stay-at-home order at time 


-  Outcome if order is/isn’t enacted


- Average of instantaneous effects  for 
states that enacted a stay at home policy

Wit i t
Yit(1), Yit(0)

Yit(1) − Yit(0)

• Only focus on starting stay-at-home orders

- Effect of “turning off” policies adds complexity
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The elements of policy trial emulation

Require 4 definitions:


1. Units and exposures


2. Causal contrasts


3. Outcomes 

4. Time zero

• Cumulative vs instantaneous outcomes

- Total number of Covid-19 cases

- Ratio of current current case count to previous day

• Transforming the outcomes

- Logarithm transformation due to exponential growth

• Data quality is a concern

- Differential changes in testing regimes over time? 



The elements of policy trial emulation

Require 4 definitions:


1. Units and exposures


2. Causal contrasts


3. Outcomes


4. Time zero
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• Staggered adoption of policies

• Create cohorts by adoption date

• Measure the effect for each cohort

• Aggregate across “single” target trials 
to a “nested” target trial

Target trials

March 23rd

April 7th

March 28th

…
..

March 19th

…
..

…
..

Overall 
Estimate
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March 23rd Cohort

• What comparison states do we use?

• Length of follow up

- Only 19 days between first and last adopters

- Expect effects to be delayed

• Compare to 8 never treated states

• Alternative: dynamic comparison groups

- Need to assess assumptions for all groups

- Are changes in effects just changes in 

comparison group?

A single target trial
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• 2x2 DiD table is blunt

- Averages over the entire post period

• Dynamic DiD estimate

- Use one reference time as “pre” period

- Create a sequence of 2x2 estimates

• Allows for a diagnostic check

- Pre-period should have zero effect

• Possible violations of // trends

- Anticipation, time-varying confounding

Estimating time varying effects
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• Each single trial is different

- Starting point, length of follow up, etc.


• Take a size-weighted average

From single to nested target trials

̂DID k =
1
n1

G

∑
g=1

n1g ̂DID kg

[Hernán et al 2016]

[Abraham & Sun 2021; Callaway & Sant’Anna 2021]

• Recovers “stacked” DiD


• Uncertainty quantification is tricky

- Various forms of resampling methods 



Plausibility of  // trends depends on outcome



Slight differences when using case time
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Wrapping up
• Evaluating policy impact is difficult, especially recently!

• More design-based thinking can give some clarity

- Avoids many of the pitfalls of naive regression models

- Newer panel-data approaches fit naturally into a trial-emulation framework

- IPW, matching, double robust DiD, synthetic controls, etc.

- How we can use models to help estimate effects, without relying on them for identification

Thank you!

ebenmichael.github.io


Ben-Michael, E., Feller, A., & Stuart, E. A. (2021). A Trial Emulation Approach for Policy 
Evaluations with Group-level Longitudinal Data. Epidemiology, 32(4), 533–540.

http://ebenmichael.github.io


Appendix



Raw case count estimates



Case ratio estimates
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